PMSF

IT Consulting

RFMI Protocol Specification

Version 0.91 Draft

Pierre R. Mai <pmai@pmsf.de>

2017-10-27

Copyright (C) 2015-2017 PMSF IT Consulting Pierre R. Mai

Permission is hereby granted, free of charge, to any person obtaining a copy of this
specification (the "Specification”), to deal in the Specification without restriction,
including without limitation the rights to use, copy, modify, merge, publish, dis-
tribute, sublicense, and/or sell copies of the Specification, and to permit persons to
whom the Specification is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Specification.

THE SPECIFICATION IS PROVIDED "AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SPECIFICATION OR THE USE OR OTHER DEALINGS IN
THE SPECIFICATION.

Contents

—_General Information
[T Data Formaty e e
| INA Byte Size and Byte-Orderingo
12 Data Typesin MesSsades« v v v v v v v i e
ILI.3 Defined Data Typestor FMU values

14 DatalayoutinFramed
[.2 _Generic Message Structurg e

[.3~ Generic Response Codes i i
[.3.1 Fatal Error Response Messagg v v v i e e e
[[32 ErrorResponseMessagd o e
[.3.5 Unsupported Response Messagg«
[.3.4 NACK Response Messageg v v v v v i i i v it

2_Session Handling
R.1__Session Startup Phasg e

RI1T _REMIHello CommandMessagdg
R.1.2 REMI Hello Response Messagg
.2 5ession SNUTAOWN o v v e e e e e

R.2.1 _Session Shutdown Command Messagg oo

R.2.2 Session Shutdown Response Messagg

N

MU Selection and Frame Setup Phases
Bl FEMUSelection Phasg o o e
BIT TListFMUs CommandMessagd« o o
B.12 List FMUs Response Messagd o o

B.1LS Select FMU Command Messagd oo
B.1.4 Select FMU Response Messagdgo e

B2 Frame Setup Phasd
B.2.1 Get FMU Model Description Command message«
B.2.2 Get FMU Model Description Responsemessagd
B.2.5 List Defined Frames Command MeSSagde « . . v v v v v v v v v oo
1.2.4 List Defined Frames Response messagg« . . v v v v v v v v e
B.2.5 Define Frame Command Messageg« . . .o e
B.2.6 Define Frame Response Messagg« . o v oo e

@ Tnitialization and Simulation Phases
A1 Initialization Phasg e

g.11 Begin Initialization Command Messaggo

A.1.2 Begin Initialization Response Messagdg

B.1l5 Get Variables Command Messaggo

K14 Get Variables Response Messageg 25

B15 Set Variables CommandMessagd oL 26
416 Set Variables Response Messagdg 27

B.2 Simulation Phasd e 28
B21 Begin Simulation Command Messagd 28
B.2.2 Beain Simulation Response Messagdg 29
B.2.3 Setup Experiment CommandMessagd 29
B.2.4 Setup Experiment Response Messagg 30
g.2.5 Enter Initialization Mode CommandMessagd 30
B.2.6Enter Initialization Mode Response Messagg 31
g.2.7 Exit Initialization Mode CommandMessagd 31
B.2.8 Exit Initialization Mode Response Messagg oo 31
g.2.9 Simulation Step CommandMessagd 32
B.210 Simulation Step Responsg 34

B.3 Simulation Shutdown. 34
g.35.1 Simulation Shutdown Command Messagg 34
B.3.2 Simulation Shutdown Response Messagd 35
B.3.5 Simulation Reset Command Messagg, 35
B.3.4 Simulation Reset Response Messagd 35

B _Example Time Lines 37
b1 Basic Simulation Run 37

RFMI Protocol Specification 0.91 Draft 1 General Information

1 General Information

The Remote FMI (RFMI) Protocol is intended to be a low-overhead, low-latency, high-
bandwidth protocol for accessing the functionalities of FMUs hosted by an RFMI server from
RFMI clients across TCP/IP-based networks or potentially other transport mechanisms, like
(R)DMA-based communication mechanisms.

All communication is initiated by an RFMI Client, with the RFMI server, which is hosting the
FMUs, passively responding to incoming RFMI client requests.

1.1 Data Formats
1.1.1 Byte Size and Byte-Ordering

All information is exchanged based on 8-bit bytes (octets). The byte-ordering for all larger
data-types is determined upon session start-up by negotiation, with a default of little-endian
(Intel) byte-order.

1.1.2 Data Types in Messages

All integer fields in messages are unsigned integers, unless specifically noted otherwise, in the
byte-ordering that has been determined upton session start-up by negotiation, again unless
specifically noted otherwise.

All designated string fields in messages are transmitted in UTF-8 encoding with a trailing
zero termination and a leading 32bit unsigned integer length field, which will indicate the
number of bytes the string field contains, including the zero termination but excluding the
length field, and excluding any additional zero-byte padding at the end of the string. All
string fields are zero-byte padded to end on a 4 byte (32-bit) boundary.

1.1.3 Defined Data Types for FMU values

For the transmission of FMU values inside frames, the following set of data types are currently
defined:

Type ld Type Name Size Alignment Description

Ox0011 Boolean
0x0012 Boolean2
0x0021 Integer
Ox0031 Real
0Ox0041 String
Ox0051 Binary

O is False, 1is True, FMI 1.0

O is False, 1is True, FMI 2.0
32bit Signed Integer

IEEE 754 Double Precision Float
Zero-terminated UTF-8 String
Length-terminated Binary

5 3 0 DM
A AN OO DD

RFMI Protocol Specification 0.91 Draft 1 General Information

Note that string values in frames are prepended by a leading 32bit length count, which gives
the length of the zero-terminated UTF-8 string, including the zero termination but excluding
the length field and excluding any zero-byte padding at the end of the string. All string values
are zero-byte padded to end on a 4 byte (32-bit) boundary.

There are two different boolean types, Boolean (Type Id OxOO0O11) and Boolean2 (Type Id
0x0012) to efficiently support the differing type sizes in FMI 1.0 (Booleans are byte-sized)
and FMI 2.0 (Booleans are the same size as Integer).

The RFMI protocol also supports transmission of length-terminated binary value fields, as
needed e.g. to support OSMP (OSI| Sensor Model Packaging) compliant FMUs. The represen-
tation of these binary fields is similar to the representation of string fields, with the difference
that binary fields are not zero-terminated. The binary data is prepended by a leading 32bit
length count, which gives the length of the binary data, excluding the length field and any
zero-byte padding at the end of the string. All binary values are zero-byte padded to end on
a 4 byte (32-bit) boundary.

1.1.4 Data Layout in Frames

When transmitting values inside a frame, each sub-frame is aligned to the alignment of its
data type. If necessary, zero padding is added before the sub-frame (after the preceding
sub-frame) to get proper alignment. It is therefore recommended to define frames with sub-
frames in the order from largest to smallest alignment (with the exception of strings), i.e. real
before integer before boolean before string; in this way no padding is necessary, except the
padding inherent in strings. This order also ensures that the statically sized part of a frame is
contiguous at the beginning, with the dynamically sized string part (if any) at the end.

Note that all frames start at an 8 byte aligned boundary. If a message contains data before
the frame data, the start of the frame data will still always be aligned to an 8 byte aligned
boundary, if necessary by including padding before the start of the frame data.

1.2 Generic Message Structure

All messages being communicated contain the following initial fields:

RFMI Protocol Specification 0.91 Draft 1 General Information

Offset

Size

Description

0x0000

0x0004

0x0008

4

4

8

Command/Response Code:

32bit unsigned integer field in actual byte-order

This field indicates the command or response being sent
from the RFMI client to the RFMI server (command) or
vice-versa (response). Note that command and response
codes are choosen in such a way that they indicate a
readable mnemonic if output in little-endian byte order
and the reverse in big-endian byte order.

Note also that command codes always use all upper-case
ASCII letters whereas response codes always use all
lower-case ASCII letters.

Command/Response Flags:

This 32bit unsigned byte field can contain additional

flag information for the message. The actual meaning of
the flags will depend on the message command/response
code.

Message Length:

64bit unsigned byte length of the complete message in

bytes, including the command/response code and the message
length byte. This message length field can be used to

skip unknown messages and/or messages containing unknown
additional content, and also to check for certain forms

of message corruption.

Following the initial fields is the actual message payload, which depends on the message

being sent.

1.3 Generic Response Codes

The RFMI server can respond to all command messages with one of the following generic
response messages, usually indicating a fault situation:

1.3.1 Fatal Error Response Message

This message is sent by the RFMI server when it encountered a fatal error condition which

necessitates the shutdown of the connection. The RFMI server will shut down its side of the
connection the moment it has sent the fatal error response message, so the RFMI client should
not expect to be able to communicate with the RFMI server on this connection any longer.

RFMI Protocol Specification 0.91 Draft 1 General Information

Offset Size Description

0x0000 4 Select FMU Response: O0x6C746166 (‘fatl’)

0x0004 4 Message Flags: 0xO0000000

0x0008 8 Message Length: 22 + Error Length

0x0010 4 Error Code: 32bit unsigned integer giving a more specific
cause for the error. Default Value is OxO0000000, which
indicates a generic error cause.

0x0014 4 Error Length: 32bit unsigned length of error string

0x0018 n Error String: Error Length 8bit bytes, UTF-8 encoded,

zero-terminated message describing the fault condition
leading to the fatal error.

1.3.2 Error Response Message

This message is sent by the RFMI server when it encountered a non-fatal error condition,
i.e. the connection can stay up and the RFMI server is prepared to handle further messages.
Whether those messages will succeed will depend on the internal state of the RFMI server, i.e.
the RFMI client should be prepared to handle additional error conditions, potentially chosing

to abort the connection.

RFMI Protocol Specification 0.91 Draft

1 General Information

Offset Size Description

0x0000 4 Select FMU Response: Ox726F7265 (eror’)

0x0004 4 Message Flags: 0xO0000000

0x0008 8 Message Length: 22 + Error Length

0x0010 4 Error Code: 32bit unsigned integer giving a more specific
cause for the error. Default Value is OxO0000000, which
indicates a generic error cause.

0x0014 4 Error Length: 32bit unsigned length of error string

0x0018 n Error String: Error Length 8bit bytes, UTF-8 encoded,

zero-terminated message describing the fault condition
leading to the non-fatal error.

1.3.3 Unsupported Response Message

This message is sent by the RFMI server when it encountered a command message it does
not support, either completely or partially (e.g. certain flags or optional features are not
supported), i.e. the connection will stay up and the RFMI server is prepared to handle further
messages, including retrying the current command message, e.g. without options.

Offset Size Description

0Ox0000 4 Select FMU Response: Ox70736E75 Cunsp’)

0x0004 4 Message Flags: 0xO0000000

0x0008 8 Message Length: 22 + Error Length

0x0010 4 Error Code: 32bit unsigned integer giving a more specific
cause for the error. Default Value is 0xO0O000000, which
indicates a generic error cause.

0x0014 4 Error Length: 32bit unsigned length of error string

0x0018 n Error String: Error Length 8bit bytes, UTF-8 encoded,

zero-terminated message describing the unsupported
command/options leading to this message being sent.

RFMI Protocol Specification 0.91 Draft 1 General Information

1.3.4 NACK Response Message

This message is sent by the RFMI server when it encountered a command message it does
understand but declines to take into account, e.g. when it declines a new frame definition. The
connection will stay up and the RFMI server is prepared to handle further messages, including
retrying the current command message with a different contents.

Offset Size Description

0x0000 4 Select FMU Response: Ox6B63616E ('nack’)

0x0004 4 Message Flags: 0xO0000000

0x0008 8 Message Length: 22 + Error Length

0x0010 4 Error Code: 32bit unsigned integer giving a more specific
cause for the error. Default Value is OxO0000000, which
indicates a generic error cause.

0x0014 4 Error Length: 32bit unsigned length of error string

0x0018 n Error String: Error Length 8bit bytes, UTF-8 encoded,

zero-terminated message describing the declined
command/options leading to this message being sent.

RFMI Protocol Specification 0.91 Draft 2 Session Handling

2 Session Handling

All communication is initiated by the RFMI client opening a TCP/IP connection to the RFMI
server on a pre-determined port, the default port being port 11711, and sending an RFMI Hello
Command; the RFMI Server will respond with an RFMI Hello Response.

If at any time the connection is lost or otherwise interrupted, both sides will close the con-
nection; it is suggested that the connection is closed in an abortive fashion, i.e. causing a TCP
RST to be sent, instead of the normal FIN shutdown sequence.

The server can try to keep the session state alive for reconnection until an implementation-
defined time out. If the time-out occurs, or the server otherwise determines not to keep the
session alive, it will have to clean up all internal state, including FMU state in a safe way (e.g.
potentially resetting the FMU, or otherwise causing its cleanup routines to run).

The RFMI client can try to reconnect to an existing session by reopening a connection to the
RFMI server, and providing the session id in the RFMI Hello Command message. If possible, the
RFMI server will acknowledge the reconnection by answering with an RFMI Hello Response
message with the same session id. The session state and FMU state will then be unchanged.
If the RFMI server cannot reconnect the session, it will respond with a different, new session
id.

Once started up, a session is terminated either through a Session Shutdown Command mes-
sage and corresponding response, or through connection loss and time-out.

2.1 Session Startup Phase

Upon opening a connection to the RFMI server, the connection is in the Session Startup Phase,
requiring the completion of an RFMI Hello Command / RFMI Hello Response Message se-
guence in order to start or reconnect to a session, and transition to the FMU Selection Phase.

2.1.1 RFMI Hello Command Message

Upon opening the connection, the RFMI client will send a RFMI Hello Command Message:

10

RFMI Protocol Specification 0.91 Draft 2 Session Handling

Offset Size

Description

0x0000 4

0x0004 4
0x0008 8
0Ox0010 2
0x0012 2
0x0014 4

RFMI Protocol and Byte-Ordering Marker:

32bit Unsigned Integer 0x494D4652 in requested byte
order, yielding 'RFMI’ for little-endian, and 'IMFR’

for big-endian.

Message Flags: OxO0000000

Message Length: 24

16bit Protocol Major Version Field: 0x00O01

The major protocol version requested by the RFMI client.
Major version changes in the protocol indicate changes
that are not backward-compatible.

The client should use the maximum version number it is
prepared to handle.

16bit Protocol Minor Version Field: OxO000

The minor protocol version requested by the RFMI client.
Minor version changes in the protocol indicate changes
that are backward-compatible.

The client should use the maximum version number it is
prepared to handle.

Session Restart Id: If the client is trying to reconnect
to a pre-existing session, it can supply the session id
as a 32bit unsigned integer in this field. If the client
is not trying to reconnect, this field will contain the
value OxO0000000.

2.1.2 RFMI Hello Response Message

If the RFMI server is able to process the connection request, the RFMI server will answer with
a RFMI Hello Response Message:

n

RFMI Protocol Specification 0.91 Draft 2 Session Handling

Offset

Size

Description

0x0000

0x0004

0x0008

0x0010

0x0012

0x0014

RFMI Protocol and Byte-Ordering Marker:

32bit Unsigned Integer Ox696D6672 in the byte order
that is choosen by the server, yielding 'rfmi’ for
little-endian and ’imfr’ for big-endian.

NB: The choice of the server can take the requested
byte-order of the client as supplied in the RFMI Hello
Command Message, but is not required to do so, and may
select a byte-order of its own choosing and/or capability.

Message Flags: 0xO0000000

Message Length: 24

16bit Protocol Major Version Field: OxO0O01

The major version number supported by the server, which
can be equal to or less than the version number requested
by the client. If the client is not prepared to handle

a lower version number it must shutdown the session after
receiving the server response with the non-supported
lower version number.

16bit Protocol Minor Version Field: 0xO000

The minor version number supported by the server, which
can be equal, lower or higher than the version number
requested by the client.

Session Id: New session Id for this session.

If the client requested a session restart in its RFMI

Hello Command Message, and the FMI server was able to
restart that session, the session id will be the one
requested.

In all other cases a new session id will be generated and
returned. Note that the FMU server is free to reuse
session ids after a session has been properly shut down
or after a non-shut down session has timed-out.

The server will ensure that if the client requested the
resumption of a session and the server is not able to
comply the returned new session id will be unequal to the
requested session id.

12

RFMI Protocol Specification 0.91 Draft 2 Session Handling

2.2 Session Shutdown

The RFMI client can end a session at any time after the session startup by sending a session
shutdown command message and closing its side of the connection. The RFMI server will
respond with a session shutdown response message and also close its side of the connection.

2.2.1 Session Shutdown Command Message

This message can be sent at any time after session startup by the RFMI client in order to
shutdown the session and end communication.

Offset Size Description

0x0000 4 Session Shutdown Command: Ox46464F53 (SOFF’)

0x0004 4 Message Flags: OxO0000000

0x0008 8 Message Length: 16

2.2.2 Session Shutdown Response Message

Offset Size Description

0x0000 4 Session Shutdown Response: Ox66666F73 (’soff’)

0x0004 4 Message Flags: 0xO0000000

0x0008 8 Message Length: 16

13

RFMI Protocol Specification 0.91 Draft 3 FMU Selection and Frame Setup Phases

3 FMU Selection and Frame Setup Phases

3.1 FMU Selection Phase

After session startup has completed, if the session is not a reconnected session that already
transitioned to the Frame Definition Phase prior to reconnection, the FMU selection sequence
is initiated through the client sending either the List FMUs Command Message, which is then
followed by a Select FMU Command Message, or directly sending a Select FMU Command
Message.

The RFMI server will supply the set of variables of the FMU in its FMU Selected Response
Message. Once the RFMI server has sent this reply, the session will transition to the Frame
Setup Phase.

3.1.1 List FMUs Command Message

The RFMI client can optionally send a List FMUs Command Message, in order to list the FMUs
available in the RFMI server:

Offset Size Description

0x0000 4 List FMUs Command: 0x554D464C (CLFMU’)

0x0004 4 Message Flags: 0xO0000000

0x0008 8 Message Length: 16

3.1.2 List FMUs Response Message

The RFMI server will reply with an List FMUs Response Message:

14

RFMI Protocol Specification 0.91 Draft 3 FMU Selection and Frame Setup Phases

Offset Size Description
0x0000 4 List FMUs Response: 0x756D666C (Ifmu’)
0x0004 4 Message Flags: 0xO0000000
0x0008 8 Message Length: 20 + FMU Descriptions Length
0x0010 4 32bit Unsigned Int: Number of FMU Descriptions in Response
0x0014 ... N FMU Descriptions, each with the following fields:
+0x00 2 FMI Major Version: 16bit Unsigned Integer
+0x02 2 FMI Minor Version: 16bit Unsigned Integer
+0x04 2 FMU Kind: 16bit Unsigned, OxO000 = Co-Simulation
+0x06 2 FMU Capabilities: 16bit Unsigned Integer
+0x08 4 Name Length: 32bit unsigned length of name string
+0x0C x FMU Name: Name Length 8bit bytes, UTF-8 encoded, zero-

terminated, padded with zero bytes to next 32bit boundary,
so that next FMU Description starts 32bit aligned.

The FMU Kind field indicates the type of FMU, with OxO000 being defined for Co-Simulation
FMUs. Currently no other kind is defined, however support for Model-Exchange and poten-
tially other kinds of FMUs (hybrid co-simulation, etc.) is to be added in the future.

The FMU Capabilities field will indicate the advanced capabilities that the FMU supports.
Currently this field is defined to be O, however expect field values for support of event-
handling, etc. to be defined in the future.

3.1.3 Select FMU Command Message

Either directly or after having received the List FMUs Response Message, the client will select
the FMU to be used in the session through the Select FMU Command Message:

15

RFMI Protocol Specification 0.91 Draft 3 FMU Selection and Frame Setup Phases

Offset Size Description
0x0000 4 Select FMU Command: 0x4C455346 ('FSEL’)
0x0004 4 Message Flags: 0xO0000000
0x0008 8 Message Length: 20 + FMU Name Length
0x0010 Name Length: 32bit unsigned length of name string
0x0014 n FMU Name: Name Length 8bit bytes, UTF-8 encoded, zero-

terminated, padded with zero bytes to next 32bit boundary.

3.1.4 Select FMU Response Message

The RFMI server responds with a Select FMU Response Message, which will contain additional
information on the FMU, including a list of all variables of the FMU.

16

RFMI Protocol Specification 0.91 Draft 3 FMU Selection and Frame Setup Phases

Offset Size Description

0x0000 4 Select FMU Response: Ox6C657366 ('fsel’)

0x0004 4 Message Flags: 0xO0000000

0x0008 8 Message Length: 28 + FMU Name Length + Variables
0x0010 4 Name Length: 32bit unsigned length of name string

0x0014 n FMU Name: Name Length 8bit bytes, UTF-8 encoded, zero-
terminated, with zero-byte padding to 64bit alignment

0x0014 8 64bit Unsigned Int: Number of Variable Definitions in

+n Response
0x001C ... m Variable Definitions, each with the following fields:
+n
+0x00 2 Variable Kind: 16bit unsigned integer field giving the
kind

+0x02 2 Variable Type: 16bit unsigned integer field giving the
FMU basic data type of the variable.

+0x04 4 Variable Value Reference: 32bit unsigned integer id of

the variable unique within its basic data type.
+0x08 4 Name Length: 32bit unsigned length of variable name string
+0x0C n Variable Name: Name Length 8bit bytes, UTF-8 encoded,

zero-terminated, with zero-byte padding to 32bit alignment

The variable kind field indicates the kind of variable, e.g. input, output, parameter, etc. It
is currently defined to consist of two 8bit sub-fields, indicating the variable variability field
in the least significant byte, and the causality in the most significant byte, with the following
definitions:

1. Variable Causality

17

RFMI Protocol Specification 0.91 Draft 3 FMU Selection and Frame Setup Phases

Value FMI Version Description

0x00 1.0 + 2.0 Input, variable to be set by connections from the
outside of the FMU, i.e. proper inputs to the FMU.

0xO01 1.0 + 2.0 Output, variable can be used as an output of the
FMU in connections to other systems.

0Ox02 1.0 Internal, variable is not to be used in connections,
but can be changed during initialization, e.g. this
is often used for parameters in FMI 1.0.

Ox03 1.0 None, variable has no effect on the FMU model itself
but is used e.g. for debug flags, etc.

0Ox04 2.0 Localis the FMI 2.0 equivalent of internal used for
non-parameters, see Parameter/Calculated Parameter

0x05 2.0 Parameter is used in FMI 2.0 for parameters that are
to be set by the outside.

Ox06 2.0 Calculated Parameter is used in FMI 2.0 for those
parameters that are calculated internally in the FMU
based on other parameters and internal calculations.

0x07 2.0 Independent variable, i.e the time variable if it

is present in the exposed variables.

2. Variable Variability

Value FMI Version Description

0x00 1.0 + 2.0 Constant, value never changes

0x01 1.0 Parameter, value only changes during initialization

0x02 1.0 + 2.0 Discrete, value changes only at event time instants,
i.e. discrete variables of types boolean, integer,
enumeration, string.

0x03 1.0 + 2.0 Continuous, value changes at any time, i.e. real
variables.

0x04 2.0 Fixed, FMI 2.0 equivalent of Parameter, but renamed
and slightly changed in semantics, since 2.0 also
has tunable parameters that can change during the
simulation.

0x05 2.0 Tunable, intended for tunable parameters that can

change during the simulation, causing events in the
process.

3. Useful combinations for FMI 1.0

18

RFMI Protocol Specification 0.91 Draft

3 FMU Selection and Frame Setup Phases

Value Causality Variability Description
0Ox??00 Any Constant A constant value, can be treated
identically regardless of causality,
i.e. Ox0100, 0x0200, Ox0300 and 0x0400
Ox0001 Input Parameter An input parameter, treat identically
0x0201 Internal Parameter to 0x0201 which is also an input
parameter.
0x0002 Input Discrete Discrete Input
0x0003 Input Continuous Continuous Input
0x0101 Output Parameter Treat as output, but value potentially
never changes during simulation.
0x0102 Output Discrete Discrete Output
0x0103 Output Continuous Continuous Output
0x0202 Internal Discrete Discrete Internal Variable
0x0203 Internal Continuous Continuous Internal Variable
0x0301 None Parameter Treat as debug information, that can
0x0302 None Discrete be read and potentially set as indicated
0x0303 None Continuous by the variability. Best to ignore if

not certain.

The RFMI Server will treat variables with kind OxO002 and Ox0O003 as inputs and vari-
ables with kind O0x0100, 0x0101, 0x0102 and 0x0103 as output variables for default

frame building.

4. Useful combinations for FMI 2.0
See FMI 2.0 standard.

3.2 Frame Setup Phase

In this phase the communication frames to be used later on are setup or inquired. Optionally
the RFMI client can query the RFMI server for the contents of the modelDescription.xml file
through the Get FMU Model Description Command.

The RFMI client can inquire the set of default frame definitions from the RFMI server with
a List Defined Frames Command, and/or it can optionally chose different/additional frame

19

RFMI Protocol Specification 0.91 Draft 3 FMU Selection and Frame Setup Phases

definitions, which it will define with Define Frame Command Messages; if the RFMI server can
support these definitions it will respond with Define Frame Response Messages, otherwise it
will decline the definitions with a NACK Response Message.

After the frames are defined, the session is completely set-up and the connection can enter
the Simulation Initialization Phase, through a Begin Initialization Commmand message sent by
the RFMI client.

3.2.1 Get FMU Model Description Command message

This message requests the current FMU’s XML Model Description from the RFMI server. This
information can be used to determine default values, minimum/maximum value ranges and
other information on the FMU.

Offset Size Description

0x0000 4 Get FMU Model Description Command: 0x4C4D5846 (CFXML")

0x0004 4 Message Flags: 0xO0000000

0x0008 8 Message Length: 16

3.2.2 Get FMU Model Description Response message

This message is the response the RFMI server sends to an RFMI client Get FMU Model Descrip-
tion Command message. It just contains the raw XML model Description file of the selected
FMU.

Offset Size Description

0x0000 4 Get FMU Model Description Response: Ox6C6D7866 ('fxml’)

0x0004 4 Message Flags: 0xO0000000

0x0008 8 Message Length: 16 + XML Model Decription String

0x0010 ... XML Model Description of the selected FMU as raw XML,
with zero-termination.

3.2.3 List Defined Frames Command message

This message requests a list of currently defined frame definitions from the RFMI server. These
include the frames defined by default, as well as any frames that were defined by the RFMI
client through Define Frame Messages.

20

RFMI Protocol Specification 0.91 Draft 3 FMU Selection and Frame Setup Phases

Offset Size Description
0x0000 4 List Defined Frames Command: 0x4D52464C CLFRM?)
0x0004 4 Message Flags: 0xO0000000
0x0008 8 Message Length: 16

3.2.4 List Defined Frames Response message

This message is the response the RFMI server sends to an RFMI client List Defined Frames

Command message.

Offset Size Description
0x0000 4 List Defined Frames Response: 0x6D72666C (lfrm’)
0x0004 4 Message Flags: 0xO0000000
0x0008 8 Message Length: 20 + Frame Definitions
0x0010 4 32bit Unsigned Int: Number of Frame Definitions in
Response
0x0014 n Frame Definitions, see below

1. Frame Definition

Each frame definition consists of a frame identifier and a set of sub-frame definitions:

Offset Size

Description

0x0000

0x0004

0x0008

4

4

Frame ldentifier: 32bit unsigned integer

Note that Frame Identifier OXOOO0O0O0OO is reserved for use
as an empty frame, and Ox10000000 is reserved for use as
a dynamic frame identifier, see below.

Frame Sub-Frames: 32bit unsigned integer count of
Sub-Frames in the Frame.

n Sub-Frame Definitions

2. Sub-Frame Definition

21

RFMI Protocol Specification 0.91 Draft 3 FMU Selection and Frame Setup Phases

Each sub-frame definition consists of a sub-frame field type and a set of sub-frame

entries:

Offset Size

Description

0x0000 2

0x0002 2
0x0004 4
0x0008

+0x00 4

Sub-Frame Fields Type

Reserved

Sub-Frame Entry Count: 32bit unsigned integer count of
Sub-Frame Entries in the Sub-Frame.

n Sub-Frame Entries, each with the following fields:
Value Reference: 32bit unsigned integer identifying the
underlying variable.

3. Pre-Defined Frames

By default, the following frames are defined for each FMU:

Frame Id Description
O0x00000000 Empty Frame: This frame is defined as the empty frame,
which can be used in commands where an empty frame is
needed. It is protected against redefinition.
0Ox00000001 Standard Input Frame: All Continuous and Discrete Input
Variables
0x00000002 Standard Output Frame: All Continuous and Discrete Output

Variables

Frame Id Ox10000000 is reserved for dynamic frames, where the frame definition is
sent inline in the same message, preceding the frame data (hence it is not allowed to
permanently define frames with Frame Id Ox10000000 through DFRM). In that case,
the frame data will follow directly after the frame definition, but aligned to an 8 byte
boundary, so that frame data alignment works out correctly. l.e. if the frame definition

does not end at an 8

byte boundary, zero padding is added until it does.

Frame Ids O0x80000000 and above are reserved for new frame definitions by the RFMI

client, i.e. no pre-defi

ned frames exist in this region.

22

RFMI Protocol Specification 0.91 Draft 3 FMU Selection and Frame Setup Phases

3.2.5 Define Frame Command Message

This message can be sent by the RFMI client to the RFMI server in order to define a new frame
or redefine an existing frame.

Offset Size Description

0x0000 4 Define Frame Command: 0x4D524644 CDFRM*)

0x0004 4 Message Flags: OxO0000000

0x0008 8 Message Length: 16 + Frame Definition

0x0010 ... Frame Definition, see above

3.2.6 Define Frame Response Message

If defining the frame succeeds, then the define frame response message is sent:

Offset Size Description

0x0000 4 Define Frame Response: Ox6D726664 ('dfrm’)

0x0004 4 Message Flags: OxO0000000

0x0008 8 Message Length: 16

If defining the frame is not possible for some reason, the RFMI server will respond with a
nack response message.

23

RFMI Protocol Specification 0.91 Draft 4 Initialization and Simulation Phases

4 Initialization and Simulation Phases

4.1 Initialization Phase

The Initialization Phase is started by the RFMI client sending the Begin Initialization Command
message, which the RFMI server will acknowledge with a Begin Initialization Response mes-
sage. Once Initialization Phase has been entered, the RFMI client can get and set parameter
variables and input variable start values through the Get Variables Command and Set Vari-
ables Command messages. Once the client is finished setting parameters, it can transition to
the Simulation Phase through sending the Start Simulation Command message.

4.1.1 Begin Initialization Command Message

The sending of this command by the RFMI client to the RFMI server initiates transition from
the Frame Setup Phase to the Initialization Phase.

Offset Size Description

0Ox0000 4 Begin Initialization Command: 0x54494E49 CINIT")

0x0004 4 Message Flags: OxO0000000

0x0008 8 Message Length: 16

4.1.2 Begin Initialization Response Message

The RFMI server answers with a begin initialization response message:

Offset Size Description

0Ox0000 4 Begin Initialization Response: Ox74696E69 (init")

0x0004 4 Message Flags: OxO0000000

0x0008 8 Message Length: 16

4.1.3 Get Variables Command Message

This message allows the RFMI client to get current values of variables using either permanently
defined frames or dynamic frames (see above).

24

RFMI Protocol Specification 0.91 Draft 4 Initialization and Simulation Phases

Offset Size Description

0x0000 4 Get Variables Command: 0x56544547 CGETV’)

0x0004 4 Message Flags: 0xO0000000

0x0008 8 Message Length: 24 + optional sub-frame definitions

0x0010 4 Output Frame Identifier: 32bit unsigned integer indicating
the frame identifier for output values that the server
should supply in its response to this message. Can be
0x00000000 if no output values should being provided.
If this is 0x10000000 then this word and all following
words constitute a a dynamic frame definition, i.e. the
frame definition starts at offset Ox0010.

0x0014 4 For Dynamic Frames:
Frame Sub-Frames: 32bit unsigned integer count of
Sub-Frames in the Frame.
Otherwise: Reserved

0x0018 ... For Dynamic Frames Only: n sub-frame definitions.

4.1.4 Get Variables Response Message

The RFMI server responds with a Get Variables Response Message:

25

RFMI Protocol Specification 0.91 Draft

4 Initialization and Simulation Phases

Offset Size Description

0x0000 4 Get Variables Response: 0x76746567 ('getv’)

0x0004 4 Message Flags: 0xO0000000

0x0008 8 Message Length: 24 + Values

0x0010 4 Output Frame Identifier: 32bit unsigned integer indicating
the frame identifier for output values that the server
is supplying in its response. Can be OxO0000000 if no
output values were requested.

0x0014 4 Reserved

0x0018 Output Frame Values

Output Frame Values are layed out as described in the
subsection Data Layout in Frames of the section General
Information at the beginning of this document.

4.1.5 Set Variables Command Message

This message allows the RFMI client to set current values of variables using either permanently
defined frames or dynamic frames (see above).

26

RFMI Protocol Specification 0.91 Draft 4 Initialization and Simulation Phases

Offset Size Description

0x0000 4 Set Variables Command: 0x56544553 ('SETV’)

0x0004 4 Message Flags: 0xO0000000

0x0008 8 Message Length: 24 + optional sub-frame definitions
+ values

0x0010 4 Input Frame Identifier: 32bit unsigned integer indicating
the frame identifier for input values being provided with
this message. Can be 0xO0000000 if no input values are
being provided.
If this is OX10000000 then this word and following
words constitute a dynamic frame definition, i.e. the
frame definition starts at offset Ox0010.

0x0014 4 For Dynamic Frames:
Frame Sub-Frames: 32bit unsigned integer count of
Sub-Frames in the Frame.
Otherwise: Reserved

0x0018 ... For Dynamic Frames Only: n sub-frame definitions.

For Dynamic Frames: After sub-frame definitions, starting
on next 8 byte boundary.

Otherwise: Starting at Offset Ox0018.

Input Frame Values

Input Frame Values are layed out as described in the
subsection Data Layout in Frames of the section General
Information at the beginning of this document.

4.1.6 Set Variables Response Message

The RFMI server responds with a Set Variables Response Message:

27

RFMI Protocol Specification 0.91 Draft 4 Initialization and Simulation Phases

Offset Size Description

0x0000 4 Set Variables Response: 0x76746573 ('setv’)

0x0004 4 Message Flags: 0xO0000000

0x0008 8 Message Length: 16

4.2 Simulation Phase

For both FMI 1.0 and 2.0 the Simulation Phase can be started by the RFMI client by sending
a Start Simulation Command Message to the RFMI server, which is answered by a Start Sim-
ulation Response Message. After this, the RFMI client can use Simulation Step Commands,
optionally combined with Set Variables and Get Variables Commands in order to drive the
simulation forward.

For FMI 2.0, the Simulation Phase can also be entered through a sequence of Setup Exper-
iment, Enter Initialization Mode and Exit Initialization Mode Command Messages to support
the newly enhanced simulation startup state machine offered by FMI 2.0.

Once the RFMI client is finished with a simulation, it can either reset the simulation back to
Initialization Phase through the Simulation Reset Command (if such resetting is supported by
the underlying FMU), or tear down the simulation (including the FMU instance) with the Simu-
lation Shutdown Command, which will return the session to the Frame Setup Phase, where the
session can either be ended through the Session Shutdown Command, or continued normally.

4.2.1 Begin Simulation Command Message

The sending of this command by the RFMI client to the RFMI server initiates transition from
the Initialization Phase to the Simulation Phase.

For FMI 2.0 this is achieved through a sequence of calls to setup the experiment, enter and
exit the initialization mode, which is directly equivalent to issuing the Setup Experiment, Enter
Initialization Mode and Exit Initialization Mode Command Messages in sequence without any
intervening messages. Clients that want/need more fine-grained control, should issue the
corresponding messages individually.

28

RFMI Protocol Specification 0.91 Draft

4 Initialization and Simulation Phases

Offset Size Description
0x0000 4 Begin Simulation Command: 0x534D4953 ('SIMS”*)
0x0004 4 Message Flags: 0xO0000000
0x0008 8 Message Length: 36
0x0010 8 Simulation Start Time: Double Precision Floating-Point
value indicating the simulation start time to give to
the FMU.
0x0018 8 Simulation Stop Time: Double Precision Floating-Point
value indicating the simulation stop time to give to
the FMU, if a stop time is known before-hand.
0x0020 1 Simulation Stop Time Valid: Boolean indicating whether
the simulation stop time value is provided and valid.
0x0021 3 Reserved

4.2.2 Begin Simulation Response Message

The RFMI server answers with a Begin Simulation Response Message:

Offset

Size Description

0x0000

0x0004

0x0008

4 Begin Simulation Response: 0x736D6973 ('sims’)

4 Message Flags: 0xO0000000

8 Message Length: 16

4.2.3 Setup Experiment Command Message

For FMI 2.0 FMUs only, this Command Message provides an alternative way to setup the ex-
periment data; if it is used, it must be issued prior to an Enter Initialization Mode Command
Message. It transitions the FMU to the FMU Setup Experiment Phase, where only Set Value
Command Messages and the Enter Initialization Mode Command Message are valid.

29

RFMI Protocol Specification 0.91 Draft

4 Initialization and Simulation Phases

Offset Size Description

0x0000 4 Setup Experiment Command: Ox50584553 ('SEXP’)

0x0004 4 Message Flags: 0xO0000000

0x0008 8 Message Length: 36

0x0010 8 Simulation Start Time: Double Precision Floating-Point
value indicating the simulation start time to give to
the FMU.

0x0018 8 Simulation Stop Time: Double Precision Floating-Point
value indicating the simulation stop time to give to
the FMU, if a stop time is known before-hand.

0x0020 1 Simulation Stop Time Valid: Boolean indicating whether
the simulation stop time value is provided and valid.

0x0021 3 Reserved

4.2.4 Setup Experiment Response Message

The RFMI server answers with a Setup Experiment Response Message:

Offset Size Description
0x0000 4 Setup Experiment Response: 0x70786573 ('sexp’)
0x0004 4 Message Flags: 0xO0000000
0x0008 8 Message Length: 16

4.2.5 Enter Initialization Mode Command Message

For FMI 2.0 FMUs only, this command is issued by the RFMI Client to trigger the entering of
initialization mode for the FMU, which is valid after a Setup Experiment Command Message
has already been sent. It transitions the FMU to the Initialization Mode Phase, where only Get
Value, Set Value and Exit Intitialization Mode Command Messages are valid.

30

RFMI Protocol Specification 0.91 Draft 4 Initialization and Simulation Phases

Offset Size Description

0x0000 4 Enter Initialization Mode Command: 0x494E4945 (CEINI’)

0x0004 4 Message Flags: 0xO0000000

0x0008 8 Message Length: 16

4.2.6 Enter Initialization Mode Response Message

The RFMI server answers with an Enter Initialization Mode Response Message:

Offset Size Description

0x0000 4 Enter Initialization Mode Response: OXx696E6965 (eini’)

0x0004 4 Message Flags: 0xO0000000

0x0008 8 Message Length: 16

4.2.7 Exit Initialization Mode Command Message

For FMI 2.0 FMUs only, this command is issued by the RFMI Client to trigger the exiting of
initialization mode and progression to simulation mode for the FMU, which is valid after a
preceding Enter Initialization Mode Command Message has already been sent. It transfers the
FMU to the Simulation Phase.

Offset Size Description

0x0000 4 Exit Initialization Mode Command: Ox494E4958 (CXINI’)

0x0004 4 Message Flags: 0xO0000000

0x0008 8 Message Length: 16

4.2.8 Exit Initialization Mode Response Message

The RFMI server answers with an Exit Initialization Mode Response Message:

31

RFMI Protocol Specification 0.91 Draft 4 Initialization and Simulation Phases

Offset Size Description

0x0000 4 Exit Initialization Mode Response: Ox696E6978 (’xini’)

0x0004 4 Message Flags: 0xO0000000

0x0008 8 Message Length: 16

4.2.9 Simulation Step Command Message

This command (optionally) provides new input values to the FMU, steps the FMU to the current
simulation time + step size, and (optionally) requests the values of output values in one go.
If used properly the simulation can be driven solely by stringing Simulation Step Command
messages together.

The RFMI server will answer with a Simulation Step Response message, if the simulation
step finished sucessfully, or any of the error responses, if the step failed for some reason.

32

RFMI Protocol Specification 0.91 Draft

4 Initialization and Simulation Phases

Offset Size Description

0x0000 4 Simulation Step Command: 0x50455453 ('STEP’)

0x0004 4 Message Flags: 0xO0000000

0x0008 8 Message Length: 48 + Input Frame Values

0x0010 8 Current Simulation Time: Double Precision Floating-Point
indicating the current simulation time. This value is
transmitted to ensure that the current simulation time
between client and server is identical.

0x0018 8 Step Size: Double Precision Floating-Point indicating the
step size the simulation is supposed to calculate to, i.e.
the FMU is supposed to calculate to current simulation
time + step size. Note that step size can be O during
event iteration, if the underlying FMU supports this.

0x0020 1 New Step: Boolean indicating that the prior step has
been accepted, and a new step is being started.

0x0021 7 Reserved

0x0028 4 Input Frame Identifier: 32bit unsigned integer indicating
the frame identifier for input values being provided with
this message. Can be 0xO000000O0 if no input values are
being provided.

0x002C 4 Output Frame Identifier: 32bit unsigned integer indicating
the frame identifier for output values that the server
should supply in its response to this message. Can be
0x00000000 if no output values should being provided.

0x0030 Input Frame Values

Input Frame Values are layed out as described in the
subsection Data Layout in Frames of the section General
Information at the beginning of this document.

33

RFMI Protocol Specification 0.91 Draft 4 Initialization and Simulation Phases

4.2.10 Simulation Step Response

The RFMI server responds to the Simulation Step Command message with a Simulation Step
Response message if the simulation step completed successfully.

Offset Size Description

0x0000 4 Simulation Step Response: 0x70657473 (’step’)

0x0004 4 Message Flags: OxO0000000

0x0008 8 Message Length: 32 + Output Frame Values

0x0010 8 Current Simulation Time: Double Precision Floating-Point
indicating the current simulation time. This value is
transmitted to ensure that the current simulation time
between client and server is identical.
Note that this time is identical to the IEEE754
floating-point sum of the current simulation time and
step size values from the Simulation Step Command message.

0x0018 4 Output Frame Identifier: 32bit unsigned integer indicating
the frame identifier for output values that the server
is supplying in its response. Can be 0x00000000 if no
output values were requested.

0x001C 4 Reserved

0x0020 ... Output Frame Values
Output Frame Values are layed out as described in the
subsection Data Layout in Frames of the section General
Information at the beginning of this document.

4.3 Simulation Shutdown
4.3.1 Simulation Shutdown Command Message

The sending of this command by the RFMI client to the RFMI server initiates transition from
the Simulation Phase back to the Frame Setup Phase.

34

RFMI Protocol Specification 0.91 Draft 4 Initialization and Simulation Phases

Offset Size Description

0x0000 4 Simulation Shutdown Command: O0x4E574453 CSDWN’)

0x0004 4 Message Flags: OxO0000000

0x0008 8 Message Length: 16

4.3.2 Simulation Shutdown Response Message

Offset Size Description

0x0000 4 Simulation Shutdown Response: Ox6E776473 ('sdwn’)

0x0004 4 Message Flags: 0xO0000000

0x0008 8 Message Length: 16

4.3.3 Simulation Reset Command Message

The sending of this command by the RFMI client to the RFMI server initiates transition from
the Simulation Phase back to the Initialization Phase.

Offset Size Description

0Ox0000 4 Simulation Reset Command: 0x54535253 ('SRST’)

0x0004 4 Message Flags: OxO0000000

0x0008 8 Message Length: 16

4.3.4 Simulation Reset Response Message

Offset Size Description

0x0000 4 Simulation Reset Response: Ox74737273 (’srst’)

0x0004 4 Message Flags: OxO0000000

0x0008 8 Message Length: 16

35

RFMI Protocol Specification 0.91 Draft 4 Initialization and Simulation Phases

36

RFMI Protocol Specification 0.91 Draft 5 Example Time Lines

5 Example Time Lines

5.1 Basic Simulation Run

RFMI Client RFMI Server Description

RFEMI RFMI Hello Command
rfmi RFMI Hello Response
LFMU List FMUs Command
Ifmu List FMUs Response
FSEL Select FMU Command
fsel Select FMU Response
LFRM List Defined Frames Command
Ifrm List Defined Frames Response
INIT Begin Initialization Command
init Begin Initialization Response
SETV Set Variables Command
setv Set Variables Response
SIMS Begin Simulation Command
sims Begin Simulation Response
STEP Simulation Step Command
step Simulation Step Response
STEP Simulation Step Command
step Simulation Step Response

(once for each simulation step until the
simulation is complete)

SDWN Simulation Shutdown Command
sdwn Simulation Shutdown Response

SOFF Session Shutdown Command
soff Session Shutdown Response

37

	General Information
	Data Formats
	Byte Size and Byte-Ordering
	Data Types in Messages
	Defined Data Types for FMU values
	Data Layout in Frames

	Generic Message Structure
	Generic Response Codes
	Fatal Error Response Message
	Error Response Message
	Unsupported Response Message
	NACK Response Message

	Session Handling
	Session Startup Phase
	RFMI Hello Command Message
	RFMI Hello Response Message

	Session Shutdown
	Session Shutdown Command Message
	Session Shutdown Response Message

	FMU Selection and Frame Setup Phases
	FMU Selection Phase
	List FMUs Command Message
	List FMUs Response Message
	Select FMU Command Message
	Select FMU Response Message

	Frame Setup Phase
	Get FMU Model Description Command message
	Get FMU Model Description Response message
	List Defined Frames Command message
	List Defined Frames Response message
	Define Frame Command Message
	Define Frame Response Message

	Initialization and Simulation Phases
	Initialization Phase
	Begin Initialization Command Message
	Begin Initialization Response Message
	Get Variables Command Message
	Get Variables Response Message
	Set Variables Command Message
	Set Variables Response Message

	Simulation Phase
	Begin Simulation Command Message
	Begin Simulation Response Message
	Setup Experiment Command Message
	Setup Experiment Response Message
	Enter Initialization Mode Command Message
	Enter Initialization Mode Response Message
	Exit Initialization Mode Command Message
	Exit Initialization Mode Response Message
	Simulation Step Command Message
	Simulation Step Response

	Simulation Shutdown
	Simulation Shutdown Command Message
	Simulation Shutdown Response Message
	Simulation Reset Command Message
	Simulation Reset Response Message

	Example Time Lines
	Basic Simulation Run

